Applications for semiconductors & electronics
Semiconductors such as silicon (Si), germanium (Ge), gallium arsenide (GaAs) or cadmium sulfide (CdS) have become indispensable in electrical engineering. Not only do they form the basis for electronic devices such as computers, displays and smartphones, they are also becoming increasingly important in the generation of light.
Semiconductor materials and electronic components based on these diverse materials and difficult manufacturing process are hard to analyze and characterize. The remedy is provided by modern thermoanalytical measuring techniques which, among other things, provide answers to the following questions:
- Under what circumstances does a silicon chip break?
- What is the thermal conductivity of an electronic component?
- What behavior do thermal sensors show at very high temperatures?
- Has the adhesive system hardened enough?
- Does the heat path of a component indicate weak points?
The thermal behavior of semiconductor components during application can be determined with thermoanalytical measuring methods as well as the efficiency of process steps including the layer structure and adhesion properties. The control of implantation profiles (e.g. boron in silicon) or clean room air (e.g. organic components) can also be realized.
Whether your task is product development, quality control, process optimization or damage analysis, Linseis can provide you with the proper product to enhance your investigations. There are countless fields of application for thermal analysis methods such as differential scanning calorimetry (DSC), thermogravimetry (TGA) or thermal (TCA) and electrical transport (HCS) measurement using the LaserFlash (LFA) technique or our proven LSR platform. LINSEIS leads the way in product capability.
silicon wafer
resistors
micro chip
electronic components: circuit board