Since 1957 LINSEIS Corporation has been delivering outstanding service, know how and leading innovative products in the field of thermal analysis and thermo physical properties.

Customer satisfaction, innovation, flexibility and high quality are what LINSEIS represents. Thanks to these fundamentals our company enjoys an exceptional reputation among the leading scientific and industrial organizations. LINSEIS has been offering highly innovative benchmark products for many years.

The LINSEIS business unit of thermal analysis is involved in the complete range of thermo analytical equipment for R&D as well as quality control. We support applications in sectors such as polymers, chemical industry, inorganic building materials and environmental analytics. In addition, thermo physical properties of solids, liquids and melts can be analyzed.

LINSEIS provides technological leadership. We develop and manufacture thermo-analytic and thermo-physical testing equipment to the highest standards and precision. Due to our innovative drive and precision, we are a leading manufacturer of thermal Analysis equipment.

The development of thermo analytical testing machines requires significant research and a high degree of precision. LINSEIS Corp. invests in this research to the benefit of our customers.

We are driven by innovation and customer satisfaction.
German engineering

The strive for the best due diligence and accountability is part of our DNA. Our history is affected by German engineering and strict quality control.

Innovation

We want to deliver the latest and best technology for our customers. LINSEIS continues to innovate and enhance our existing thermal analyzers. Our goal is constantly develop new technologies to enable continued discovery in science.
THIN FILM ANALYZER

The LINSEIS Thin Film Analyzer is the perfect solution to characterize a broad range of thin film samples in a very comfortable and quick way. It is an easy to use, single stand alone system and delivers high quality results using an optimized measurement design as well as the proven LINSEIS Firmware and Software package.

Motivation

Due to new research efforts in the field of semiconducting materials with a focus on size effects, there is a growing need for measurement setups dedicated to samples with small geometrical dimensions like thin films and nanowires with considerably different physical properties than bulk material. The characterization of these samples is important to learn more about their structure and conduction mechanism but also important for technical applications.

Measurement Setup

The LINSEIS TFA is a chip-based platform to simultaneously measure the in-plane electrical and thermal conductivity, the Seebeck coefficient as well as the Hall constant of a thin film sample in the temperature range from -170°C up to 280°C and in a magnetic field of up to 1 T. Due to the design of the setup, time consuming preparation steps can be omitted and a nearly simultaneous measurement of the sample properties is achieved. Typical errors caused by different sample compositions, varying sample geometries and different heat profiles are avoided with this measurement method.

The System can handle a broad range of different materials. It is possible to measure samples with semiconducting behaviour as well as metalls, ceramics or organics. Therefore many different deposition methods like PVD or Spin coating and drop casting are possible to use.
MEASURING SETUP

Components
The basic setup consists of a measurement chip on which the sample can be easily deposited, and the measurement chamber to provide the required environmental conditions. Depending on the application, the setup can be utilized with a Lock-In amplifier and/or a strong electric magnet. The measurements are usually taken under UHV and the samples temperature can be controlled between -170°C and 280°C during the measurement using LN₂ and powerful heaters.

Modular design
Starting with a basic setup to measure the thermal conductivity, the system can easily be upgraded with either the thermoelectric kit to measure the electrical conductivity and Seebeck coefficient or with the magnetic upgrade kit to take Hall constant, mobility and charge carrier concentration measurements.
PACKAGING OPTIONS

Following packaging options are available for the LINSEIS Thin Film Analyzer (TFA):

1. **Basic device (incl. transient package)**
 Consists of measurement chamber, vacuum pump, basic sample holder with included heater, system integrated lock-in amplifier for the 3ω-method, PC and LINSEIS Software package including measurement and evaluation software. The design is optimized to measure following physical properties:
 - λ - Thermal Conductivity
 - c_p - Specific Heat
 - ε - Emissivity (depends on material)

2. **Thermoelectric package**
 Consisting of extended measurement electronics (DC) and evaluation software for thermoelectric experiments. The design is optimized for measuring the following parameters:
 - σ - Electrical Conductivity / Electrical Resistivity
 - S - Seebeck Coefficient

3. **Magnetic package**
 The design is optimized for measuring the following parameters:
 - A_H - Hall Constant
 - μ - Mobility
 - n - Charge carrier concentration

4. **Low temperature option for controlled cooling down to 100 K**
 - TFA/KREG controlled cooling unit
 - TFA/KRYO Dewar 25l

Software

The TFA software package consists of two parts. A measurement software which displays the actual values as well as allows to define a measurement routine and the direct control of the setup. And an additional evaluation software for the post processing of the measured raw data.
MEASURING PRINCIPLES

Pre structured measuring chips
The chip is combining the 3 Omega measurement technique for the thermal conductivity measurement with a 4-point Van-der-Pauw setup for the determination of the electrical transport properties. The Seebeck coefficient can be measured using additional resistance thermometers located near the Van-der-Pauw electrodes. For an easy sample preparation either a strip off foil mask or a metal shadow mask can be used. This configuration allows for a nearly simultaneous characterization of a sample which has been prepared by either PVD (e.g. thermal evaporation, sputtering, MBE), CVD (e.g. ALD), spin coating, drop casting or ink-jet printing in one step.

1. Van-der-Pauw measurement
To determine the electrical conductivity (σ) and Hall coefficient (A_H) of the sample, the Van-der-Pauw method is used. After depositing the sample on the chip, it is already connected to four electrodes A, B, C & D at their edge. For the measurement, a current is applied between two of the contacts and the corresponding voltage between the remaining two is measured. By clockwise changing of the contacts and repeating of the procedure, the resistivity of the sample can be calculated using the Van-der-Pauw equation.

$$\exp\left(-\frac{md}{p} \cdot R_{AB,CD}\right) + \exp\left(-\frac{md}{p} \cdot R_{BC,DA}\right)$$

By applying a magnetic field and measuring the corresponding change of the diagonal Van-der-Pauw resistance, the Hall coefficient of the sample can be calculated.

$$A_H = \frac{d}{B} \cdot \Delta R_{AC,BD}$$

For the determination of the Seebeck Coefficient, an additional thermometer and heater is placed on the chip near the sample. This configuration allows for the measurement of the thermovoltage at different temperature gradients which can be used in order to calculate the Seebeck Coefficient $S=-V_{th}/\Delta T$.

$$S = -\frac{V_{th}}{\Delta T}$$
2. Hot stripe measurement

For the determination of the in-plane thermal conductivity, a patented pending hot-stripe suspended membrane setup is used. In this setup, a very small wire is used as heater and temperature sensor in one. The sample of interest will be deposited directly on this membrane.

For the measurement in consequence, a current is applied to the hotwire which is heated up due to Joule heating. Because of the temperature rise, the resistivity of the wire is changing and can be measured easily. From this resistivity change and the knowledge of the exact geometry of the setup, it is possible to calculate back to the thermal conductivity of the sample.

Depending on the sample, it is also possible to measure the emissivity and specific heat.

In order to get high quality results, the sample thickness times sample thermal conductivity should be equal or bigger than $2 \times 10^{-7} \text{ W/K}$.
Options

- **TFA with moveable electromagnet (up to 1 Tesla)**

- **TFA with permanent magnet (up to 0.5 Tesla)**

Chip layout (Van der Pauw Chip)

- Seebeck measurement (thermometer with hot contact on membrane. Cold contact is needle contact)
- El. Conductivity & Hall measurement using 4-Point Van-der-Pauw (needle contacts)
- Thermal conductivity (two suspended membranes with heating stripe aligned to the center)

Magnetic field

Cross plane [B]

Chip layout for VdP measurement

VdP Hall coefficient measurement
TECHNICAL SPECIFICATIONS

General

| Temperature range | RT up to 280°C
	-170°C up to 280°C
Sample thickness	from only a few nm to µm range (depends on sample)
Measurement principle	chip based (pre structured measurement chips, 24 pcs. per box)
Desposition techniques	include: PVD (sputtering, evaporation), ALD, spin coating, ink-jet printing and more
Measured parameters	Thermal Conductivity (3 Omega)
	Specific Heat
Optional	Seebeck Coefficient
	Electrical Resistivity / Conductivity
	Hall Constant / Mobility / Charge carrier conc.
	permanent magnet 0.5 T or electromagnet up to 1 T
Vacuum	up to 10⁻⁵ bar
Electronics	integrated
Interface	USB

Measurement range

Thermal Conductivity	0.05 up to 200 W/m·K
Electrical Resistivity	0.05 up to 1 · 10⁶ S/cm
Seebeck Coefficient	1 up to 2500 µV/K
Hall Mobility	1 up to 10⁷ (cm² /Volt sec)
Charge Carrier Concentration	10⁷ up to 10²¹ (1/cm³)

Repeatability & Accuracy

Thermal Conductivity	± 10% (for most materials)
Electrical Resistivity	± 6% (for most materials)
Seebeck Coefficient	± 7% (for most materials)
Hall Coefficient	± 9 % for most materials
APPLICATIONS

Thermoelectric devices
A typical application is the characterization of thin films made out of thermoelectric materials. A lot of research is done to improve the efficiency of thermoelectric devices.

Integrated devices
For the development and design of new and robust integrated devices like sensors or microchips, the semiconducting industry needs to know a lot about the physical properties of the used films. For example for the heat management or the electric insolation of such devices.

Thermal barrier coatings
Another interesting field for thin films are thermal barrier coatings as they are used in aircraft engines. Many new materials have been developed and characterized, especially in regard to their thermal behavior.

Tribological stress
The last application example is the determination of material parameters for thin films used in tools. The understanding is very important to avoid wear due to tribological stress to ensure an extended product life cycle.
APPLICATIONS

Full ZT Characterization of a 142 nm Bi$_{87}$Sb$_{13}$ thin film

Measured electrical conductivity, thermal conductivity and Seebeck coefficient as well as calculated ZT value of a 142 nm thick Bi$_{87}$Sb$_{13}$ nanofilm, prepared by thermal evaporation in the temperature range from 120 K up to 400 K.

Thermal annealing effects observed at a Bi$_{87}$Sb$_{13}$ thin film

Thermal annealing effects observed at a 282 nm thin Bi$_{87}$Sb$_{13}$ nanofilm prepared by thermal evaporation. After the first measurement run at elevated temperatures, the thermoelectric properties show strong thermal annealing effects caused by recrystallisation and defect healing processes.
Full ZT Characterization of a PEDOT:PSS layer

Measured electrical conductivity and Seebeck coefficient as well as calculated ZT value of a 15 μm thick PEDOT:PSS thin film, prepared by drop casting in the temperature range from 110 K up to 350 K.

Full ZT Characterization of a Gold nanofilm

Measured electrical conductivity, thermal conductivity and Seebeck coefficient as well as calculated ZT value of a 100 nm Au thin film, prepared by DC magnetron sputtering in the temperature range from 225 K up to 375 K. The results perfectly agree with the Wiedemann-Franz law and a clear influence of classical size effects has been observed.